55 research outputs found

    Surveying the Scope of the SU(2)_L Scalar Septet Sector

    Get PDF
    Extending the Standard Model by adding a scalar field transforming as a septet under SU(2)LSU(2)_L preserves the ρ\rho parameter at tree level and can satisfy experimental constraints on the electroweak parameters SS and TT. This work presents the first fully general phenomenological study of such an extension. We examine constraints on the septet model couplings based on electroweak and Higgs observables, and use LHC searches for new physics to bound the mass of the septet to be above 400\sim 400 GeV at a 95%95\% CL.Comment: pdfLateX, 17 pages, 6 figures, reference added. Version published in JHE

    Dirac Triplet Extension of the MSSM

    Full text link
    In this paper we explore extensions of the Minimal Supersymmetric Standard Model involving two SU(2)LSU(2)_L triplet chiral superfields that share a superpotential Dirac mass yet only one of which couples to the Higgs fields. This choice is motivated by recent work using two singlet superfields with the same superpotential requirements. We find that, as in the singlet case, the Higgs mass in the triplet extension can easily be raised to 125GeV125\,\text{GeV} without introducing large fine-tuning. For triplets that carry hypercharge, the regions of least fine tuning are characterized by small contributions to the T\mathcal T parameter, and light stop squarks, mt~1300450GeVm_{\tilde t_1} \sim 300-450\,\text{GeV}; the latter is a result of the tanβ\tan\beta dependence of the triplet contribution to the Higgs mass. Despite such light stop masses, these models are viable provided the stop-electroweakino spectrum is sufficiently compressed.Comment: 26 pages, 4 figure

    Indirect Effect of Supersymmetric Triplets in Stop Decays

    Get PDF
    We study an extension of the minimal supersymmetric standard model with a zero hypercharge triplet, and the effect that such a particle has on stop decays. This model has the capability of predicting a 125.5 GeV Higgs even in the presence of light stops and it can modify the diphoton rate by means of the extra charged fermion triplet coupled to the Higgs. Working in the limit where the scalar triplet decouples, and with small values of mA, we find that the fermion triplet can greatly affect the branching ratios of the stops, even in the absence of a direct stop-triplet coupling. We compare the triplet extension with the MSSM and discuss how the additional fields affect the search for stop pair production.Comment: pdfLateX, 16 pages, 7 figures, 2 tables, Typos, minor changes. Version published in JHE

    Recent Nuclear Astrophysics Measurements using the TwinSol Separator

    Get PDF
    Many astrophysical events, such as novae and X-ray bursts, are powered by reactions with radioactive nuclei. Studying the properties of these nuclei in the laboratory can therefore further our understanding of these astrophysical explosions. The TwinSol separator at the University of Notre Dame has recently been used to produce intense (∼106 pps) beams of 17F. In this article, some of the first measurements with these beams are discussed

    Physics at a 100 TeV pp collider: beyond the Standard Model phenomena

    Full text link
    This report summarises the physics opportunities in the search and study of physics beyond the Standard Model at a 100 TeV pp collider.Comment: 196 pages, 114 figures. Chapter 3 of the "Physics at the FCC-hh" Repor
    corecore